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• Flapping wing MAV platforms are expected to be highly maneuverable and 
quiet

• We have been designing and building Flapping Wing MAVs for 8 years 
– Increase payload capacity
– Increase drive mechanism efficiency to reduce power consumption 
– Reduce weight to increase time-of-flight

Motivation: 
Flapping Wing MAVs

Micro Air Vehicles developed in 
Advanced Manufacturing Lab, UMD

0.1 m

1 ft



Flapping Wing MAVs:
Previous Accomplishments at UMD



Enabling Technology: 
In-Mold Assembly

• In-mold assembly process for realizing 
multi-material articulated structures 

• Introduce multiple materials in the 
mold sequentially
─ Change mold cavity between different molding stages  

• Perform assembly and fabrication 
inside the mold
─ Mold acts as fabrication tool and assembly device

• Eliminate post-molding assembly
─ Attractive in markets where labor cost is high

This two degree of freedom gimbal comes out of 
mold fully assembled (Work done in AML)

Sprue and Runner  System

Multi‐Material Drive Frame

[Bejgerowski, Gupta, Bruck, IJAMT (2011)]



Enabling Technology: 
Simulation Based Computational Synthesis for Design 
Space Exploration and Parametric Optimization  

• Mechanism Design Analysis:
– Kinematic analysis (ADAMS)

– Finite element analysis (ProMechanica)

• Results:
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Variable Unit  Value 
Rocker thickness mm  2.1
Rocker breadth  mm 2.5
Wing arm thickness  mm 2.5
Wing arm breadth  mm  5.1
Hinge encapsulation thickness mm  7.5
Hinge encapsulation  breadth  mm  5.0

[Bejgerowski, et al, JMD (2009), Bejgerowski, Gupta, Bruck, JMD (2009)]



Enabling Technology:
Wing Characterization

• Advanced wing characterization 
for understanding forces and 
deformation

[Mueller, Bruck, Gupta, Exp. Mech. (2010)]

Test Stand for Measuring:
(a) Lift & (b) Thrust

(top) Cyclic Variation of Lift and Thrust, 
(bottom) Variation with Flapping Frequency



Current Challenges

• Flapping Wing MAVs can not fly more than 40 
minutes because of payload constraints

• Need platforms that can harvest energy while 
flying or resting to increase time-of-flight

• Energy harvesting technologies like Solar Cells 
can induce a tradeoff in power consumption due 
to increases in mass, stiffness, and wing area

• Effective integration requires understanding of 
mechanics principles that govern tradeoffs in 
order to enhance performance and increase 
time-of-flight



Solution: 
Multifunctional Compliant Wings

• Energy harvesting
– Technologies such as flexible Solar Cells (SCs) can be 

integrated into compliant MAV wings
• Energy storage

– Energy from SCs can be directed to battery structures 
integrated into body of MAV

• Thrust production
– Need to mitigate effects of SC integration on compliance

• Lift generation
– Needs to be able to fold wings to increase static lift

• Maneuverability
– Need to account for SC effects on control of wings 



Anticipated Impact
 Compliant multifunctional wing structures have the potential
to provide flapping MAVs with infinite flight capability

 Characterizing and modeling the mechanics of these wing
structures will enable general design principles to be
developed for flapping MAVS

Research Goals
 Develop new compliant multifunctional wing structures for
flapping MAVs

 Improve the time‐of‐flight for flapping MAVs through
integration of solar cells

 New models for effects of integrating solar cells on compliance
and performance in order to define a new multifunctional
performance index for optimizing wing design

Research Goals & Anticipated Impact



Proposed Research Approach

Experimental mechanics-based system design 
approach to integrating SCs into compliant wings for 
MAVs for improving time-of-flight through trade-off in 
energy harvesting and consumption



Solar Cell Integration into Compliant Wing 
Structures

• Use pre-packaged flexible Solar Cells (SCs) on 
existing wing structures
– Parasitic Mass and Stiffness

• Size and distribution of SCs can be varied
• Mechanics of SC integration can vary with wing 

spar configurations and bird sizes



• A test stand was developed to measure lift and trust forces generated 
by the MAV, as well as torque

• The MAV is mounted directly to a 6 DOF load cell from ATI in order to 
measure all forces and torques simultaneously

• Can compare measured with designed forces and torque to resolve any 
asymmetries due to wing construction or in the flapping motion

Experimental: 
Lift and Thrust Measurements

6 DOF Load Cell

Measured

Designed

z

x

FY
FX



• Digital Image Correlation is an optical method [Bruck, Sutton, et al, 
Exp. Mech. (1989)] developed to measure 2D or 3D deformations on 
an object surface under real loading conditions, which can be viewed 
as an “Optical Finite Element Analysis”

• Actual displacement is continuously measured and the Lagrangian
strain tensor is available at every point on the specimen’s surface

Experimental: 
3-D Digital Image Correlation (DIC)

Out-of-plane 
Displacement

In-plane Strain

Wing w/speckle 
pattern for DIC



Comparison of 3-D DIC with Thrust 
Measurements

Transformed DIC strains along 
direction of spar correlated most 

directly with thrust measurements 
obtained from test stand

1 Hz y x



Compliant Front Spar Wing

• Composed Mylar® wing material
• Flexible spar section fixed between two carbon fiber rods
• Two additional carbon fiber rods support the wing

Mylar®

Flexible spar

Carbon Fiber 
Spar



Solar Cell (SC) Integration into Wings

3 OEM Solar 
Cell Modules

Compliant Front Spar

Stiff Front Spar

SCs can be aligned in parallel to maximize current, and 
coverage can be varied

reverse



Characterization of MF Wing 
Performance

Outdoor testing of integrated SCs on regular front spar wing (left) 
and compliant front spar wing (right)



Stiff vs. Compliant Front Spar:
3 Hz flapping frequency

Compliant Front Spar

Significant differences in shapes during flapping for compliant 
front spar relative to stiff front spar are easily discerned from 

high speed videos

Stiff Front Spar



SC Performance while Flapping
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Load Cell Results

Compliant Front SparStiff Front Spar

Load cell measurements indicate very little asymmetry in 
flapping performance for both stiff and compliant front spars

+z: thrust direction
-x: lift direction



Stiff vs. Compliant Front Spars: 
Thrust and Lift

Thrust Lift

• Compliant spar generates 100% more thrust
• Downward lift component is eliminated with 

compliant front spar with slight increase overall

Avg. Thrust (lb) Avg. Lift (lb)
Stiff Compliant Stiff Compliant
0.24 0.48 0.22 0.25



Effects of SC integration

Thrust

Lift

Stiff Front Spars Compliant Front Spars

• SC integration significantly decreases thrust/negligible lift change
• Compliant front spar has 3% more lift than stiff front spar

Avg. Thrust (lb) Avg. Lift (lb)

Stiff Compliant Stiff Compliant

-0.10 0.22 0.21 0.28



Mechanics of SC Integration into 
Compliant Wing Structures
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• Integration of Solar Cells (SCs) can reduce thrust and lift generation
- Increases inertial mass of wing
- Stiffens wing

• Effects of SCs vary with mass of bird and size of wings
• Need to relate benefits of energy harvesting to detrimental effects on 

flapping performance of compliant wing structures to develop 
multifunction performance index

Effects of SCs on 
Flapping Performance

Variation of UMD MAV 
Characteristics with Mass 

Multifunctional 
Performance Analysis

Multifunctional 
Performance 

Index

To infinity and beyond!

original

SCs



• Commercial SCs are being integrated into 
compliant MAV wings for energy harvesting

• Impact of SCs on MAV thrust generation is being 
characterized and related to shape constraint 
using 3D DIC
– Can develop a new multifunctional performance index 

for optimizing performance
• The effects of compliant versus stiff front spars 

have been characterized use 6 DOF load cell 
– Can determine benefits of compliant front spars in 

generating more lift to offset weight of SCs
– Can reduce power requirements by reducing flapping 

frequency

Conclusions



FY13 Efforts

• Characterize flapping frequency effects on MF wings
• Conduct extensive 3D DIC characterization of MF wings 
• Develop mechanics model for MF wings
• Conduct time-of-flight tests 
• Use mechanics model to modify design synthesis of MF wings
• Re-design MF wing to enhance time-of-flight
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